Abstract

This paper examines finite element models for studying the long time frictional heating of locomotive wheels. The aim is to obtain the temperature distribution and the thermal and residual stresses in the wheel, for given conditions of rolling-plus-sliding, with the least computing effort. Initially a rigorous 3-D model is employed. Then this model is reduced to a much simpler but equivalent 2-D axisymmetric model with reasonable assumptions. It is shown, with the help of the 3-D model, that the actual temperature distribution is fluctuating and exhibits a sharp spike during each wheel rotation. For a part of the cycle the temperature is much higher than the steady state temperature calculated from the 2-D model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.