Abstract

Light emitting diodes, LEDs, historically have been used for indicators and produced low amounts of heat. The introduction of high brightness LEDs with white light and monochromatic colors have led to a movement towards general illumination. The increased electrical currents used to drive the LEDs have focused more attention on the thermal paths in the developments of LED power packaging. The luminous efficiency of LEDs is soon expected to reach over 80 lumens/W, this is approximately 6 times the efficiency of a conventional incandescent tungsten bulb. Thermal management for the solid-state lighting applications is a key design parameter for both package and system level. Package and system level thermal management is discussed in separate sections. Effect of chip packages on junction to board thermal resistance was compared for both SiC and Sapphire chips. The higher thermal conductivity of the SiC chip provided about 2 times better thermal performance than the latter, while the under-filled Sapphire chip package can only catch the SiC chip performance. Later, system level thermal management was studied based on established numerical models for a conceptual solid-state lighting system. A conceptual LED illumination system was chosen and CFD models were created to determine the availability and limitations of passive air-cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.