Abstract

Thermal adaptation composite material is a kind of composite material with required thermal conductivity or coefficient of thermal expansion through the selection and design of its components. A kind of thermal adaptation composite material that has excellent thermal conductivity and heat storage capacity is prepared by absorbing paraffin into expanded graphite. An electronic cooling experimental system based on the thermal adaptation composite material is built. The temperature variations of the simulative chip are respectively measured in this system and the traditional cooling system to investigate the effect of the thermal adaptation composite material on electronic cooling. At the same time, the impacts of composite material dosage and combining active cooling manner on the performance of electronic cooling are also studied. The experimental results show that the apparent heat transfer coefficients of the electronic cooling experimental system are 1.25–1.30 times higher than those of the traditional cooling system. It also can be found that the dosage of composite material has positive impact on the performance of electronic cooling. By combining active cooling manner, it can compensate the deficiency of cooling capacity in phase change thermal control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.