Abstract
This study investigates the airflow and thermal management of a compact electric energy storage system by using computational fluid dynamic (CFD) simulation. A porous medium model for predicting the flow resistance performance of the battery modules in a battery cabinet is developed. By studying the influence of rack shapes, the effects of heat exchanger arrangements and other parameters on the airflow and battery thermal distribution are analyzed. When applying a larger bottom air channel, the inlet flow uniformity of each battery cabin in the cabinet increases by 5%. Meanwhile, temperature standard deviation decreases by 0.18 while raising the flow rate from 3 m/s to 8 m/s, indicating better temperature uniformity in the battery cabin. When the charge–discharge ratio reaches 0.5 C, the temperature deviation of the entire cabinet significantly increases, reaching 8 K. Furthermore, a rack-level thermal management scheme is proposed to effectively reduce the thermal deviation of the container electric energy storage system and improve the overall temperature uniformity. Results reveal that the rack-level thermal management of the wavy cabinet in the electric storage container can effectively improve the thermal uniformity of the distributed battery cabin, and the overall thermal deviation is controlled within 1.0 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.