Abstract
Heatsinks have long been used for cooling of electronic components to maintain them under the maximum allowed operational temperature. Forced air cooling with heatsink is suitable and enough efficient for low power applications cooling. Varieties of heatsinks are proposed by specialized industries to cool different kinds of electronic components. However, in most cases we need the appropriate heatsink to each specific case and particularly under transient heat generation that can be caused by many electronic or power electronic devices. The heat transport and evacuation process is tightly related to the heatsink performance.This paper examines the cooling characteristics of a heatsink used in a specific industrial application. The investigation is performed using Computational Fluid Dynamics (CFD) and the heat transfer performance of the heatsink is mainly determined by the Nusselt number which can be calculated from the numerical results. Analysis and discussion of the numerical results and especially the level of Nusselt number obtained at the contact surface of the heatsink with the surrounding cooling air allow optimization of the industrial heatsink shape to meet the requested cooling performance. Comparison of cooling performance before and after heatsink design optimization showed noticeable improvement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have