Abstract

Abstract In the present study, we numerically investigate the thermal lagging behavior on the hard disk drives in heat-assisted magnetic recording systems via the optical absorption model. The influences of overcoats, laser radius, relative scanning speed, interfacial thermal resistance, and the heat sink layer on the thermal lagging behavior are studied in detail. It is found that the thermal lagging distance, i.e., the horizontal distance between the location of the maximum temperature and the laser center, increases with an increment of speed and/or radius of the laser spot. The overcoats, the interfacial thermal resistance, and the heat sink layer have negligible effects on the lagging distance. Thus, the multilayered disk can be simplified as a single-layer disk for investigating thermal lagging distance. Meanwhile, the horizontal temperature gradient varies with these factors. Different overcoats result in different horizontal temperature gradient owing to the difference of in-plane thermal diffusivity. A laser with a smaller radius or a slower speed leads to a higher horizontal temperature gradient. The thermal resistance influences the horizontal temperature gradient insignificantly. This study may provide useful information for the design of hard disk drives for heat-assisted magnetic recording technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call