Abstract

Abstract Monte Carlo ray tracing (MCRT) has been a widely implemented and reliable computational method for calculating light-matter interaction in porous media, the computational modeling of porous media and performing MCRT becomes significantly expensive when dealing with intricate structures and numerous dependent variables. Hence, Machine Learning (ML) models have been utilized to overcome computational burdens. In this study, we investigate two distinct frameworks for characterizing radiative properties in porous media for pack-free and packing-based methods. We employ two different regression tools for each case, namely Gaussian process regressions for pack-free MCRT and Convolutional Neural Network (CNN) models for pack-based MCRT to predict the radiative properties. Our study highlights the importance of selecting the appropriate regression method based on the physical model, which can lead to significant computational efficiency improvement. Our results show that both models can predict the radiative properties with high accuracy (>90%). Furthermore, we demonstrate that combining MCRT with ML inference not only enhances predictive accuracy but also reduces the computational cost of simulation by more than 96% using the GP model and 99% for the CNN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.