Abstract
Superhydrophilic surfaces without the need of other stimuli are usually realized by constructing a rough morphology. However, constructing rough surfaces usually require specialized equipment or complicated processing. Besides, rough surfaces can cause undesirable scattering, which strongly limits the use in optical devices. In this article, we prepared superhydrophilic TiO2 films with ultra-smooth surfaces using simple sol-gel dip-coating method. The hydrophilicity of the TiO2 films varied with different post-heat treatments. The films heat-treated at 400 °C exhibited a durable superhydrophilicity and anti-fogging property. This superhydrophilicity was attributed to the decrease of surface hydrophobic alkoxy groups and the formation of point defects, i.e., Ti3+ and oxygen vacancies, which are favourable for dissociative water adsorption. The amount of surface organic groups was influenced by autophobicity effects, further hydrolysis and decomposition of residual alkoxy groups. Additionally, the wettability behaviours of the films were also explained from the perspective of the surface energy. These results can benefit the design and manufacture of anti-fogging and self-cleaning superhydrophilic TiO2 films.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have