Abstract

There has been speculation that multidrug-resistant (MDR) strains are generated by subtherapeutic antibiotic use in food animals and that such strains result in increased resistance to lethality by food processes such as heat and irradiation. The objective of this study was to evaluate the heat resistance of 20 strains, namely an MDR and a non–multidrug-resistant (NMDR) strain of each of 10 Salmonella serotypes isolated from cattle or cattle environments. MDR and NMDR Salmonella serotypes studied included Montevideo, Typhimurium, Anatum, Muenster, Newport, Mbandaka, Dublin, Reading, Agona, and Give. For phase I, stationary-phase cultures of the strains were aliquoted into sterile capillary tubes and immersed in a temperature-controlled water bath at 55, 60, 65, and 70°C for appropriate times. Survivor curves were plotted for each temperature, and a best-fit linear regression was derived for each temperature. D-values (decimal reduction times) and z-values (changes in temperature required to change the D-values) were calculated for each strain. Although there was no overall significant difference in the heat resistance of MDR and NMDR serotypes, NMDR serotypes generally appeared to have slightly higher heat resistance than NMDR serotypes, especially at 55 and 60°C. The highest relative heat resistance (highest z-values) was exhibited by Salmonella Anatum. Notably, the relative heat resistance of NMDR Salmonella Agona was similar to that of NMDR Salmonella Anatum and had the highest D-values at all four temperatures. For phase II, three serotypes (regardless of resistance profile) with the highest relative heat resistance and their drug-resistant counterparts were selected for thermal inactivation in ground beef patties cooked to endpoint temperatures. Salmonella Agona was able to survive in ground beef cooked to an internal temperature of 71°C. Results of these studies suggest drug resistance does not affect the heat resistance of Salmonella and that serotype or strain is an important consideration in risk assessment of the pathogen with regard to survival at cooking temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call