Abstract

Lava flows can cause substantial physical damage to elements of the built environment. Often, lava flow impacts are assumed to be binary, i.e. cause complete damage if the lava flow and asset are in contact, or no damage if there is no direct contact. According to this paradigm, buried infrastructure would not be expected to sustain damage if a lava flow traverses the ground above. However, infrastructure managers (“stakeholders”) have expressed concern about potential lava flow damage to such assets. We present a workflow to assess the thermal hazard posed by lava flows to buried infrastructure. This workflow can be applied in a pre-defined scenario. The first step in this workflow is to select an appropriate lava flow model(s) and simulate the lava flow’s dimensions, or to measure an in situ lava flow’s dimensions. Next, stakeholders and the modellers collaborate to identify where the lava flow traverses buried network(s) of interest as well as the thermal operating conditions of these networks. Alternatively, instead of direct collaboration, this step could be done by overlaying the flow’s areal footprint on local infrastructure maps, and finding standard and maximum thermal operating conditions in the literature. After, the temperature of the lava flow at the intersection point(s) is modelled or extracted from the results of the first step. Fourth, the lava flow-substrate heat transfer is calculated. Finally, the heat transfer results are simplified based on the pre-identified thermal operating conditions. We illustrate how this workflow can be applied in an Auckland Volcanic Field (New Zealand) case study. Our case study demonstrates considerable heat is transferred from the hypothetical lava flow into the ground and that maximum operating temperatures for electric cables are exceeded within 1 week of the lava flow front’s arrival at the location of interest. An exceedance of maximum operating temperatures suggests that lava flows could cause thermal damage to buried infrastructure, although mitigation measures may be possible.

Highlights

  • Lava flow modelling has been undertaken for decades and, among other things, has been used to assess the hazard posed by flows to the built environment

  • The method creates thermal profiles that can be simplified to make them easy to interpret, and that facilitate and support science-based stakeholder decision-making. We demonstrate how this workflow can be applied in a deterministic case study in the monogenetic, basaltic Auckland Volcanic Field (AVF), which underlies the city of Auckland on the North Island of New Zealand (e.g., Hopkins et al 2020 and references therein)

  • Auckland Volcanic Field case study We demonstrate how this workflow can be applied in a deterministic case study in the monogenetic, basaltic AVF (Fig. 2), which underlies the city of Auckland in the North Island of New Zealand

Read more

Summary

Introduction

Lava flow modelling has been undertaken for decades and, among other things, has been used to assess the hazard posed by flows to the built environment. Suh et al 2003; Davoine and Saint-Marc 2016; Staudacher et al 2016), and caused up to a hundred fatalities when a petrol station exploded in 2002 (Brown et al 2017) In yet another example, construction workers over 20 km downwind of the 2018 Lower East Rift Zone (Hawaii, USA) ocean entry commented that laze (i.e., the gaseous products when lava flows and ocean water interact) affected the safety procedures allowing them to work (e.g., whether they were allowed to work and what personal protective equipment was required) (Tsang and Lindsay 2019). Etna eruption when bystanders were killed by debris ejected by steam driven explosions when a lava flow overrode a submarine cistern (Francis and Oppenheimer 2004)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call