Abstract
Numerical and analytical methods are employed to investigate the thermal and fluid flow performance of a microchannel heat sink for cooling a high-power diode laser bar. Heat transfer characteristics and pressure drop in the microchannel under different flow rates are studied. A thermal resistance network, which is proved to have less than 5.4% error, is proposed to characterize the resistance components for the microchannel heat sink. Both numerical modeling and thermal resistance network analysis are verified by experimental results based on the wavelength shift method. Two new heat sinks with more uniform temperature distribution for laser emitters compared with the existing design are presented, and their performance is validated by numerical modeling and spatially resolved spectrum measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.