Abstract

Frost heave induced ground surface uplift can have a destructive impact on infrastructures when freezing methods are used for underground construction. The complexity of overburden pressure and the coupled heat and mass transport interaction and their relation to different water flow rates make frost heave modelling an interesting but challenging task. A frost heave model describing phase transition and multiphase interactions (liquid-crystal-soil matrix) is presented in this paper and used to investigate the kinetic growth of the ice lens. By introducing water activity determined growth rate of ice crystals, the micro- and mesophysical mechanisms underlying ice lens growth involve ice crystal nucleation, crystallization, phase transition, and water migration in the frozen fringe are explored. This work indicates that the frozen fringe thickness, the ice crystals growth and the cryogenic-suction in the frozen fringe are particularly significant in determining the ice lens growth kinetics (frost heave) under different overburden pressures. The variation in ice lens growth under various overburden pressures appears to be controlled by the water flow path, cryogenic-suction, and permeability of the frozen fringe. This research reveals the kinetic growth of the ice lens, and helps to evaluate and mitigate geological hazards when artificial ground freezing is applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.