Abstract
A new approach was used to monitor the autocatalytic reaction of benzoyl peroxide (BPO) by non-isothermal and isothermal kinetic models constructed using differential scanning calorimetry and thermal activity monitor III analyses, respectively. Autocatalytic reactions generally start slowly and then accelerate as the reactant is consumed and the autocatalyst is produced. Consequently, an autocatalytic reaction may require special design considerations to avoid certain upset conditions, such as runaway exothermic reactions.We conducted a thermal hazard analysis of various products, including benzoic acid, benzene, and phenol, which were deliberately selected and individually mixed with BPO to investigate their thermal hazards. Model fitting can be applied to predict the amount of time required to achieve the maximum rate under isothermal conditions at any temperature of interest. The proposed procedure was effective and accurate for evaluating the autocatalytic reaction of BPO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.