Abstract

The displacement and temperature discontinuity method is extended to the coating structure of a two-dimensional decagonal quasicrystal–crystal system, where the behavior of interfacial cracks is studied under a thermo-mechanical load. The fundamental solution of unit-point displacement and temperature discontinuity is derived on a crack surface. Based on superposition principle and finite part integrals, the boundary integral–differential equation is obtained. The algebraic equations for solving displacement and temperature discontinuities on line elements are constructed for numerical simulation. Stress intensity factors and energy release rate at crack tips are represented by the discontinuities. Influences of many factors on fracture are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.