Abstract

In this paper, we study thermodynamics, thermal fluctuations, phase transitions and the charged anti-de Sitter black hole surrounded by perfect fluid dark matter. Large black holes are shown to be stable when subject to thermal fluctuations, and we begin by exploring how these fluctuations affect the uncorrected thermodynamic quantities of entropy, Helmholtz free energy, Gibbs free energy, enthalpy specific heat, and phase transition stability. We also discuss null geodesics and the radius of the photon sphere for the charged AdS BH and use the radius of a photon sphere to calculate the Lyapunov exponent and angular velocity. Exceptionally, we test the effects of various parameters of a black hole graphically by observing the existence of the correction parameter and the coupling parameter, which reveal the behavior of corrected thermodynamic quantities. Lastly, we see how the system is stable (under the effects of the dark matter parameter) by figuring out the specific heat and Hawking temperature, which are both related to entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.