Abstract
Continuous solid solutions and the reversible phase transition from the I-43d cubic phase to the Ia-3d cubic phase are revealed in the borosilicate series K1 − xRbxBSi2O6. Samples in the KBSi2O6-RbBSi2O6 system are prepared by solid-phase synthesis and crystallization of glasses and investigated using the annealing and quenching technique, high-temperature X-ray diffraction, and dilatometry. The above polymorphic phase transition is observed in all solid solutions at temperatures in the range from 330 to 430°C depending on the composition: an increase in the rubidium content in the solid solution leads to a gradual decrease in the phase transition temperature. The linear thermal expansion coefficients α are determined for solid solutions of different crystalline modifications and glasses. The linear thermal expansion coefficients α for the I-43d low-temperature phase are equal to (20–23) × 10−6 K−1 according to the X-ray diffraction data and (21–24) × 10−6 K−1 according to the dilatometric data. The values of α for the Ia-3d high-temperature phase lie in the range (4–9) × 10−6 K−1 according to the X-ray diffraction data and in the range (6–9) × 10−6 K−1 according to the dilatometric data. The linear thermal expansion coefficients for both modifications decrease with an increase in the rubidium content in the solid solutions. The linear thermal expansion coefficients for glasses α = (10–11) × 10−6 K−1 are close to those for the high-temperature modification and virtually independent of the sample composition. The I-43d (cubic) ai I41/a (tetragonal) o Ia-3d (cubic) polymorphic phase transitions in the KBSi2O6 compound are revealed by differential scanning calorimetry (DSC) and dilatometry. Their reversibility is confirmed by the DSC data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.