Abstract

The structure of deuterated jarosite, KFe3(SO4)2(OD)6, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate ~10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH)6] octahedra and [SO4] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, α = α0 + α1 T, where α0 = 1.01 × 10−4 K−1 and α1 = −1.15 × 10−7 K−2. On heating, the hydrogen bonds, O1···D–O3, through which the (001) octahedral–tetrahedral sheets are held together, become weakened, as reflected by an increase in the D···O1 distance and a concomitant decrease in the O3–D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call