Abstract

The Northern Highlands Terrane of Scotland hosts several thrust nappes that were deformed and metamorphosed during the Silurian Scandian orogeny. Quantitative petrological analysis of metamorphic assemblages indicates that the hinterland-positioned Naver nappe experienced decompression heating from 8–9 kbar and 600°C to 6–7 kbar and 700°C. Monazite–xenotime thermometry and geochronology delineate a detailed temperature–time history for the Naver nappe. Monazite often exhibits compositional zoning, which is used to establish multiple temperature–time points in several samples. These data indicate that the Naver nappe experienced relatively fast heating (c. 50°C myr−1) and relatively slow cooling (15–20°C myr−1), with peak temperatures occurring at c. 425 Ma. This temperature–time evolution is compatible with the early Emsian (407–403 Ma) deposition of unmetamorphosed conglomerates that rest on high-grade metamorphic rocks in the Naver nappe, but requires an acceleration in the cooling rate to 40–50°C myr−1 at 420–410 Ma. Geochronological constraints from this study and previous work suggest that deformation and metamorphism in the hinterland of the Scandian orogen in northern mainland Scotland are younger than the c. 430 Ma deformation in the foreland-positioned Moine thrust zone. We postulate that heat from pervasive granitic intrusions in the Naver nappe weakened the crust, allowing deformation to retreat to the hinterland of the orogen. Supplementary material: A description of our analytical methods, all U–Pb-trace element data, additional figures explaining our petrological analysis and other relevant data are available at: https://doi.org/10.6084/m9.figshare.c.4458041

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call