Abstract

An entangled quantum refrigerator working with a three-qubit one-dimensional isotropic Heisenberg XX model in a constant external magnetic field is constructed in this paper. Based on the quantum first law of thermodynamics, the expressions for several basic thermodynamic quantities such as the heat transferred, the net work and the coefficient of performance are derived. Moreover, the influence of the thermal entanglement on the basic thermodynamic quantities is investigated. Several interesting features of the variation of the basic thermodynamic quantities with the thermal entanglement in zero and nonzero magnetic field are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.