Abstract

Bone char (BC) is a promising porous material that can be used for preparing a form-stable composite phase change material (PCM). In this paper, form-stable polyethylene glycol (PEG 6000)/BC composite PCMs were prepared by impregnation method. The PEG was used as the phase change material, and two different particle sizes of BC (0.8–1 mm: BC-1; 0.25–0.8 mm: BC-2) were acted as the supporting materials. The phase composition and chemical structure of the composite PCMs (PEG/BC-1 and PEG/BC-2) were characterized using X-ray diffraction and Fourier transformation infrared. The results indicated that the PEG can be well impregnated into BC pores with good compatibility. Thermal properties and thermal stability of the composite PCMs were determined by differential scanning calorimeter (DSC) and thermogravimetry analysis (TGA). DSC results showed that the maximum impregnation percentage for PEG into BC-1 and BC-2 was 38.77 and 43.91%, respectively, without melted PCM seepage from the composites. The TGA analysis revealed that the composite PCMs had good thermal stability above their working temperature range. The thermal cycle test of 100 melting–freezing cycles showed that the composite PCMs have good thermal reliability and chemical stability. The form-stable composite PCMs can be used as thermal energy storage material for waste heat storage and solar heating system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.