Abstract

As the cost of renewable energy falls below fossil fuels, the key barrier to widespread sustainable electricity has become availability on demand. Energy storage can enable dispatchable renewables, but only with drastic cost reductions compared to current battery technologies. One electricity storage concept that could enable these cost reductions stores electricity as sensible heat in an extremely hot liquid (>2000 °C) and uses multi-junction photovoltaics (MPV) as a heat engine to convert it back to electricity on demand, hours or days, later. This paper reports the first containment and pumping of silicon in a multipart graphite tank above 2000 °C, using material grades that are affordable for energy storage at GWh scales. Low cost molded graphite with particle sizes as large as 10 μm successfully contained metallurgical grade silicon, even with as much as two-thirds iron by mass for up to 10 h and temperatures as high as 2300 °C, in tanks as large as two gallons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call