Abstract
Thermal buckling of nanocolumns considering nonlocal effect and shear deformation is investigated based on the nonlocal elasticity theory and the Timoshenko beam theory. By expressing the nonlocal stress as nonlinear strain gradients and based on the variational principle and von Kármán nonlinearity, new higher-order differential governing equations with corresponding higher-order nonlocal boundary conditions both in transverse and axial directions for instability of nanocolumns are derived. New analytical solutions for some practical examples on instability of nanocolumns are presented and analyzed in detail. The paper concluded that the critical buckling load is significantly increased in the presence of nonlocal stress and the results confirm that nanocolumn stiffness is enhanced by nanoscale size effect and reduced by shear deformation. The critical temperature change is increased with larger diameter to length ratio and higher nonlocal nanoscale. It is also concluded that at low and room temperatures the buckling load of nanocolumns increases with increasing temperature change, while at high temperature the buckling load decreases with increasing temperature change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.