Abstract

Magnetic pulse welding (MPW) is a solid state joining process, successfully utilized to join dissimilar metals. This advantage attracted manufacturing industries to fabricate hybrid materials to attain materials with a combination of multiple attributes. The high speed impact during the welding process causes various interfacial phenomena, which have been reported in previous research studies. Combined high speed collision, Joule heating due to eddy current and plastic heat dissipation cause noticeable heating in the workpiece. The heating from the plastic work and collision energy could particularly be significant at the vicinity of the interface compared to other regions of the workpiece. The Joule heating due to eddy current affects the entire workpiece that is prominent before the collision. There is a sharp increase of the temperature at the onset of weld formation due to dissipation of plastic work during the collision. 3D simulations of coupled electromagnetic-mechanical-thermal were carried out to investigate the heating due to the combined Joule heating and plastic dissipation. A case study of MPW, consist of a one turn coil combined with a field shaper, is used to investigate the welding process. The simulations were performed using LS-DYNA®, which has the capability of using both finite and boundary elements to solve the thermo-mechanical problem during electromagnetic forming. The predicted temperature distributions from numerical simulations show expected phenomena of Joule heating and plastic heat dissipation while the analytical approach used to estimate the localized increase in temperature due to supersonic gaseous compression. Minimizing the heating effect by identifying the influencing factors could help to optimize and control the quality of the magnetic pulse welded parts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call