Abstract
This study presents a data-driven spatial interpolation algorithm based on physics-informed graph neural networks used to develop a thermal Earth model for the conterminous United States. The model was trained to approximately satisfy Fourier’s Law of conductive heat transfer by simultaneously predicting subsurface temperature, surface heat flow, and rock thermal conductivity. In addition to bottomhole temperature measurements, we incorporated other spatial and physical quantities as model inputs, such as depth, geographic coordinates, elevation, sediment thickness, magnetic anomaly, gravity anomaly, gamma-ray flux of radioactive elements, seismicity, electrical conductivity, and proximity to faults and volcanoes. With a spatial resolution of 18km2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$18 \\ km^2$$\\end{document} per grid cell, we predicted heat flow at surface as well as temperature and rock thermal conductivity across depths of 0-7km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0-7 \\ km$$\\end{document} at an interval of 1km\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1 \\ km$$\\end{document}. Our model showed temperature, surface heat flow and thermal conductivity mean absolute errors of 6.4∘C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$6.4^\\circ C$$\\end{document}, 6.9mW/m2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$6.9 \\ mW/m^2$$\\end{document} and 0.04W/m-K\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0.04 \\ W/m-K$$\\end{document}, respectively. This thorough modeling of the Earth’s thermal processes is crucial to understanding subsurface phenomena and exploiting natural underground resources. Our thermal Earth model is available as web application at https://stm.stanford.edu, feature layers on ArcGIS at https://arcg.is/nLzzT0, and tabulated data on the Geothermal Data Repository at https://gdr.openei.org/submissions/1592.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.