Abstract

The speed-up of radiation science development with the advent of ion-irradiation experiments has, until recently, been omitted in the post-irradiation examination technique. This paper reports the results of transient grating spectroscopy—a rapid, non-destructive, in situ photothermal surface technique—of ion-irradiated single-crystals of iron, chromium, vanadium, and tungsten at room temperature. Thermal diffusivity was used to track damage development throughout irradiation, with 5 MeV self-ion irradiated iron, chromium, and vanadium showing little to no change up to damages of the order of 1 dpa. 5 MeV Si3+-ion irradiated tungsten exhibits a reduction of thermal diffusivity from 0.78(7) to 0.29(2) cm2 s−1 with logarithmically increasing dose over a similar damage range. A comparison to literature of transient grating spectroscopy thermal diffusivity values past and present shows good agreement; radiation-induced change can be clearly distinguished from differences between mono- and poly-crystalline tungsten.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call