Abstract
Diffuse scattering is a component of the powder pattern bearing information on the local atomic structure and disorder of crystalline materials. It is visible in the X-ray diffraction patterns of binary structures like Ag2O, which has a large mean squared displacement for its constituent elements. Pair distribution function (PDF) analysis is widely employed to extract this local structural information, embedded in the widths of PDF peaks. However, obtaining the PDF from experimental data requires a Fourier transform, which introduces aberrations in the transformed data due to instrument resolution, complicating the distinction between its static and dynamic components. In this work, the analysis of thermal diffuse scattering is performed directly on the X-ray powder pattern, using the traditional Rietveld method integrated with a correlated displacement model for atomic pairs. The Ag2O case study data were collected using synchrotron radiation at room temperature, supplemented by laboratory experiments up to 200°C. An Einstein model was used to obtain the harmonic and anharmonic force constants of the system. The force constants were also obtained via density functional theory and ab initio molecular dynamics simulations and showed similar values to the experiments. The analysis reveals the complex dynamic structure of Ag2O, characterized by high anisotropy in phonon dispersion relations and the presence of soft phonon modes, which explain the significant displacement parameters observed. The proposed approach can be easily employed for other binary or more complex systems to understand the dynamics of local forces through X-ray diffraction analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have