Abstract

Four types of hollow glass microspheres, having the density of 0.125–0.60 g/cm3, were filled into epoxy-matrix, and volume fraction of hollow glass microsphere was varied from 0% to 60%. The thermal, dielectric and compressive properties of the composites were investigated. The results show that the thermal conductivity, dielectric constant (Dk) and loss (Df) and compressive modulus and strength of the composites show decreased trend with increasing hollow glass microsphere content or decreasing hollow glass microsphere density, which indicates that the properties of the composites are mainly dependent on the characteristics of hollow glass microsphere. By comparing the experimental data and theoretical predictions, it is found that the properties of the composites, especially for thermal conductivity, are also related to the voids in epoxy-matrix. To conveniently predict thermal conductivity and Dk in the investigated materials system, theoretical models reported in the literature are analyzed and compared with the experimental data. Finally, suitable models are recommended. In addition, the thermal conductivity and dielectric properties of the composites were investigated as a function of testing temperature. This work indicates that thermal, dielectric and compressive properties of epoxy-matrix composites can be tailored by adjusting hollow glass microsphere content and density, which makes hollow glass microsphere filled composites a promising candidate in related fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.