Abstract

The adsorption and thermal desorption of Na from thin SiO2 films have been studied. X-ray photoelectron spectroscopy (XPS), angle-resolved XPS (ARXPS), low energy ion scattering (LEIS), temperature-programmed desorption (TPD), low energy electron diffraction (LEED) and work function measurements have been used to characterize the growth mechanism and properties of stoichiometric SiO2 films deposited onto a Re (0001) substrate. Upon deposition of Na onto SiO2 at 250 K, the first monolayer of Na exhibits ionic character, and evidence of metallic Na (plasmon features in XPS) is observed for higher coverages. TPD spectra for Na from SiO2 include a monolayer peak at ~700 K, and the multilayer peak due to sublimation of bulk Na at ~330 K. Penetration of Na into SiO2 can be induced by heating, or by He ion bombardment of a Na/SiO2 layer. The sticking probability for Na on SiO2 is ~0.5 at 250 K, and it decreases at higher substrate temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.