Abstract

The denaturation kinetics of type I collagen vitrigels synthesized under different vitrification time and temperature were analyzed by the classical Kissinger approach and the advanced model free kinetics (AMFK) using the Vyazovkin algorithm. The AMFK successfully elucidated the overall denaturation into reversible and irreversible processes. Depending on vitrification conditions, the activation energy for the irreversible process ranged from 100 to 200 kJ/mol, and the reversible enthalpy ranged from 250 to 300 kJ/mol. All of these values increased with the vitrification time and temperature, indicating that a more stable and complex structure formed with increased vitrification. The classical Kissinger method predicted the presence of a critical temperate of approximately 60 °C for the transition between reversible and irreversible processes. Scanning electron microscopy revealed the presence of fibril structures in vitrigels both before and after full denaturation; however the fibrils had became thicker and rougher after denaturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.