Abstract

The study of the system formed by ortho- and pyrophosphoric acid was resumed in order to understand the crystallization conditions of these two compounds and to highlight the existence of their possible polymorphism. To this end, the solid-liquid equilibria (SLE) of pyrophosphoric acid was studied in depth. Contradictions in literature data were resolved through systematic experimentation: solubility measurements, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Calorimetric measurements confirmed the existence of two crystalline forms of pyrophosphoric acid, and their stability domains were determined. Furthermore, thermodynamic modeling of the SLE has led to a consistent and refined representation of the observed phenomena. In particular, the transition temperature from low-temperature (form I) to high-temperature form (form II) of pyrophosphoric acid was determined at 298.4 K and the coordinates of the eutectic point common between H3PO4 and H4P2O7 (I) were precisely determined. Modeling also confirms the non-negligible quantity of triphosphoric acid in the liquid state throughout virtually the entire compositional range. Finally, X-ray powder diffraction data were used to determine the cell parameters and space group of pyrophosphoric acid using EXPO 2014 software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.