Abstract

Seven novel divalent transitional metal chelate polymers compounds (commonly known as chelate compounds or metal coordination complexes or polymer complexes) have been characterized by thermogravimetry (TG), differential thermal gravimetry (DTG) and differential thermal analysis (DTA) methods. Thermal decomposition behaviour of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) polymers with terphthaoyl-bis(p-methoxyphenylcarbamide) has been investigated by thermogravimetric analysis (TGA) at heating rate 10 °C min−1 under nitrogen atmosphere. TG/DTA of chelate compounds were shown to be a stable compound against thermal decomposition which was measured on the basis of final decomposing temperature, but it is observed in some curves that decomposition takes place at low temperature due to the lattice water, which is always placed at outer coordination sphere of the central metal ion. The presence of both lattice and coordinated water were noteworthy investigated in Co(II), Ni(II) and Cu(II) chelate polymer compounds, whereas lattice water found in Zn(II), Cd(II) and Hg(II). However, Mn(II) showed only coordinated water. Thermal stabilities for release of lattice water, coordinated water and organic moiety that occur in sequential decomposition of chelate compounds are explained on the basis of ionic size effect and electronegativity. The processes of thermal degradation taking place in seven chelate polymers were studied comparatively by TG/DTG/DTA curves which indicating the difference in the thermal decomposition. Coats–Redfern integral method is used to determine the kinetic parameters for the successive steps in the decomposition sequence of TG curves. Scanning electron microscope images of some chelate polymers were shown in previous publication revealed that particle sizes of chelate polymers were found to be of nanomaterial level therefore, resulting chelate compounds might be called as nanomaterial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.