Abstract

We have studied the thermal interactions of acetone and acetaldehyde on Si(100), both sputtered and annealed, using high resolution electron energy loss spectroscopy, (HREELS), x-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). There is no carbonyl stretch in HREELS and the C and O(1s) XPS peaks reflect two different carbonyl processes, one involving bond cleavage, the other a reduction of the C–O bond order. Hydrogen TPD gives a peak at 840–850 K which is as much as threefold more intense than from H-saturated Si(100). SiO desorbs near 1050 K and XPS shows total loss of oxygen and retention of carbon. Approximately 34% of the acetaldehyde monolayer and 62% of the acetone monolayer decomposes on annealed Si(100) to produce silicon carbide. In contrast, after sputtering with 500 eV Ar ions, these percentages are reduced to 14% and 25%, respectively. We conclude that Si dimers play an important role in the chemistry of carbonyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.