Abstract

The thermal stability and thermal decomposition pathways for synthesized composite iowaite/woodallite have been determined using thermogravimetry analysis in conjunction with evolved gas mass spectrometry. Dehydration of the hydrotalcites occurred over a range of 56–70°C. The first dehydroxylation step occurred at around 255°C and, with the substitution of more iron(III) for chromium(III) this temperature increased to an upper limit of 312°C. This trend was observed throughout all decomposition steps. The release of carbonate ions as carbon dioxide gas initialised at just above 300°C and was always accompanied by loss of hydroxyl units as water molecules. The initial loss of the anion in this case the chloride ion was consistently observed to occur at about 450°C with final traces evolved at 535 to 780°C depending of the Fe:Cr ratio and was detected as HCl (m/z=36). Thus for this to occur, hydroxyl units must have been retained in the structure at temperatures upwards of 750°C. Experimentally it was found difficult to keep CO2 from reacting with the compounds and in this way the synthesized iowaite-woodallite series somewhat resembled the natural minerals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call