Abstract

AbstractThe degradation of polystyrene (PS) in supercritical methanol was carried out under reaction temperatures ranging from 340 to 420°C and pressures of 10–30 MPa. The selectivity of liquid products was investigated at various reaction conditions. As the reaction proceeded, the selectivity of styrene monomer, dimer, 1,3‐diphenyl propane, and 1,3‐diphenyl butane had a declining tendency, whereas that of the rest (i.e., toluene, ethyl benzene, isopropyl benzene, and 3‐phenyl propanol, etc.) had an inclining tendency. The sequences of decomposition reaction could be reasoned by analyzing the variation of selectivity of liquid products. The kinetic behavior of PS in supercritical methanol had been investigated. The degradation processes of PS in such supercritical fluids could be formulated by the first‐order kinetic law at the initial stage of reaction. The activation energy for the degradation in supercritical methanol was evaluated to be 117.2 kJ/mol and it was also compared with the activation energies for depolymerization in other supercritical fluids and that for thermal pyrolysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.