Abstract

The conversion of biomass waste into resources as a recycling process is receiving increased interest due to the perceived need for a sustainable global carbon cycle and environmental considerations. Several treatment processes are being developed. Hydrothermal treatment is one of the most effective approaches, because water at high temperatures and high pressures behaves as a reaction medium with remarkable properties. In this work, the reaction behavior of guaiacol as a biomass model compound was studied in subcritical water at 483–563 K and in supercritical water at 653–673 K using a batch reactor. Guaiacol can be considered representative of the aromatic ring structures present in lignin, a major component of woody biomass. The chemical species formed in aqueous products were identified by gas chromatography/mass spectrometry and quantified using high-performance liquid chromatography. The effect of pressure and reaction time on the conversion process of guaiacol is discussed. The results obtained indicate that this method has potential for efficient organic waste conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.