Abstract

Thermal treatment of municipal solid waste incineration fly ash (FA) is an effective method to detoxicate FA and produce secondary material with good utilization properties, but the high temperature induced migration of carbon, chlorine, and catalytic metals from FA to flue gases can result in a considerable reformation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Herein, two typical fly ashes were thermally cotreated with sewage sludge (SS), respectively, and the decomposition and reformation of PCDD/Fs were systematically investigated. Thermal treatment effectively decomposed PCDD/Fs in all samples to a low level well meeting the reutilization criterion of 50 ng WHO-TEQ g−1. Cleavage of the oxygen bridge was identified as the primary decomposition pathway. Compared to mono-treating FA, cotreating FA with SS resulted in a better CaO-Al2O3-SiO2 ternary system for vitrification and effectively suppressed the reformation of PCDD/Fs in off-gases with inhibition efficiencies up to 96%. Based on the variation of chemical speciation of N, P, and S in SS after thermal treatment, SS appeared to be a S-N-containing inhibitor which passivated catalytic metals to suppress PCDD/Fs synthesis. The better suppression on de novo pathway than on chlorophenol-route identified by monitoring PCDD/F-fingerprints evolution further verified the suppression mechanism of passivating catalytic metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call