Abstract

Thermal and electric conductivities of polyethylene and poly(vinyl chloride) filled with carbon materials over a wide range are measured in order to study the effect of formed conductive particle chains on thermal conductivities of the composites. With increase of content of carbon particles, the amount of formed conductive chains exponentially increases and the conductive chains tend largely to increase thermal conductivity of a composite. Some models proposed to predict thermal conductivity of a composite in a two-phase system could not be applied to the system with high volume content of particles. In this study, a new thermal conduction model is proposed to correctly predict thermal conductivity of a composite which contains various amounts of particles ranging from a small content, to the region in which conductive chains largely effect a thermal conductivity of a composite. Thermal conductivity of a polymer filled with high volume content of particles largely decreased with a rise in temperature. This phenomenon can be referred to as a PTC phenomenon in thermal resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call