Abstract

Epoxy/multilayer graphene (ML-graphene) composites were prepared using different curing agents to control the graphene dispersion by changing the curing reactivity. With increasing initial reactivity, the aggregation size of the ML-graphene decreased and their thermal conductivity increased. In particular, the thermal conductivity of the composite prepared with p-phenylenediamine showed a maximum value of 1.46 W/(m·K) at 25 wt% ML-graphene loading because of the highest initial curing reactivity. The application of a magnetic field led to graphene alignment along the applied field, resulting in two times higher thermal conductivity than that of the corresponding system without magnetic field. The relationship between the interfacial affinity for epoxy/graphene and thermal conductivity was also investigated. As a result, resulting in a biphenyl epoxy composite showed higher thermal conductivity (6.17 W/(m·K)) than that of the bisphenol-A epoxy composite. This is derived that the π-conjugated and planar structure of biphenyl epoxy can easily interact with the surface of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.