Abstract

The question of what fraction of the total heat flow is transported by phonons with different mean-free-paths is addressed using a Landauer approach with a full dispersion description of phonons to evaluate the thermal conductivities of bulk and thin film silicon. For bulk Si, the results reproduce those of a recent molecular dynamic treatment showing that about 50% of the heat conduction is carried by phonons with a mean-free-path greater than about 1 μm. For the in-plane thermal conductivity of thin Si films, we find that about 50% of the heat is carried by phonons with mean-free-paths shorter than in the bulk. When the film thickness is smaller than ∼0.2 μm, 50% of the heat is carried by phonons with mean-free-paths longer than the film thickness. The cross-plane thermal conductivity of thin-films, where quasi-ballistic phonon transport becomes important, is also examined. For ballistic transport, the results reduce to the well-known Casimir limit [H. B. G. Casimir, Physica 5, 495–500 (1938)]. These results shed light on phonon transport in bulk and thin-film silicon and demonstrate that the Landauer approach provides a relatively simple but accurate technique to treat phonon transport from the ballistic to diffusive regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.