Abstract
Covalent organic frameworks (COFs) have been widely investigated for use in gas storage and separation, while their thermal properties have been scarcely studied. In the study reported in this paper, the thermal conductivities of 3D boron-based COFs were investigated for the first time using molecular dynamics simulations (MD) employing the Green–Kubo method. The predicted thermal conductivities of COF-102, COF-103, COF-105, and COF-108 were on the order of 0.1 W/(m·K) at 300 K. The thermal conductivity decreased by up to 47% with the increase in temperature from 200 to 500 K. This resulting low thermal conductivity was due to the short mean free path of the phonon in the COFs, which was deduced to be 2.7–9.2 nm. The low-frequency phonon modes below 50 THz contributed mostly to heat conduction. By analyzing the phonon vibrational density of states and overlap energy between per two bonded atoms, it was revealed that the connection between phenylene rings in COF-102 and COF-103 weakens the phonon coupling ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.