Abstract

Bi1−x Sb x solid solutions have attracted much attention as promising low-temperature thermoelectric materials. Previously, we observed distinct extrema in the isotherms of the transport and mechanical properties of polycrystalline Bi1−x Sb x and attributed their presence to the transition from diluted to concentrated solid solutions and to the reconstruction of the energy band structure under increasing Sb concentration. The goal of the present work is a detailed study of the concentration dependences of the thermal conductivity λ for Bi1−x Sb x polycrystalline solid solutions (x = 0 to 0.09) in the temperature range of 170 K to 300 K. It is established that the λ(x) dependences exhibit a nonmonotonic behavior: in certain concentration ranges an anomalous increase in λ with increasing x is observed. It is shown that the concentration dependences of the thermoelectric figure of merit calculated on the basis of the measured λ values are also nonmonotonic. The obtained data represent additional evidence in favor of our assumptions stated earlier about a significant effect of electronic phase transitions observed in Bi1−x Sb x solid solutions on the concentration dependences of their thermoelectric properties. These results should be taken into account when developing new Bi1−x Sb x -based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.