Abstract

<p>Physical properties of polycrystalline lead-zirconate-titanate (PZT) changes according to electrical boundary conditions and poling. This paper reports the thermal properties of poled and unpoled PZT's in the poling direction for open circuit and short circuit conditions. The authors found that the short-circuit condition exhibited the largest thermal conductivity than the open-circuit condition. In the relationship between these two thermal properties, the authors propose the "electrothermal" coupling factor k<sup>κ</sup><sub>33</sub>, which is similar to the electromechanical coupling factor k<sub>33</sub> relating the elastic compliances under short- and open-circuit conditions. On the other hand, the thermal conductivity of the unpoled specimen exhibits the lowest thermal conductivity, in comparison with the poled specimens, which suggests the importance of phonon mode scattering on the thermal conductivity with respect to elastic compliance.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call