Abstract

Complex parts are manufactured with high production rates using plastic injection. Defects in injection moulded parts are typically caused by non-uniform cooling. The design of cooling channels is a key step in the mould tool design process. Laser sintering allows for the direct fabrication at reasonable price, complex 3D tools with integrated cooling channels without the need of fixtures. This technique allows the designer to optimise the position of cooling channels relative to the heat source. This paper presents a simulation study for a non-constant thickness threaded screw cap. Results comparing conventional to conformal cooling channel show that the range between the highest and the lowest part surface temperatures is reduced by 18.8%. On the other hand, there is only a decrease of 3.9% for the maximum temperature in the interior of the threaded screw cap. Conformal cooling using laser sintering in tool manufacturing achieves an improved heat transfer leading to a better part quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.