Abstract

Injection molding is widely used in the manufacturing process of plastic products. The injection molding process aims to increase productivity, which is impacted by factors such as cooling time, the temperature distribution of plastic parts, thermal stress, warpage, etc. The cooling stage of the forming process is a critical factor that significantly influences the quality and cost-effectiveness of the final product in injection molding. With the development of additive manufacturing, the fabrication of conformal cooling channels becomes easier and more affordable compared to traditional machining techniques. Well-designed conformal cooling channels can substantially reduce cooling time, resulting in increased productivity and improved efficiency of the injection molding process. While conformal cooling channels offer improved cooling efficiency and part quality, their design process is more intricate than that of conventional channels due to the demand to account for the complex geometry of the part and to accommodate manufacturing constraints. In this paper, the conformal cooling channels are designed, and the variables for the channels are optimized to increase the cooling efficiency, and 3D printing technology is applied to produce the conformal cooling channel. A simplified finite element cooling analysis was used to compare traditional and hybrid solutions for designing cooling channels to reduce injection cycle time for plastic parts, and the design and simulation of the cooling system were based on UG and Moldflow. After comparing the simulation results of the cooling performance, we found that conformal cooling channels can reduce cooling time by 30% compared to conventional cooling channels. Additionally, they result in a more uniform temperature distribution throughout the plastic products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call