Abstract
Simple SummaryHeat stress drastically affects the productive and reproductive performance of animals in addition to causing welfare issues. Therefore, thermal comfort is an important consideration to avoid performance losses and other adverse effects of heat stress on animal physiology under various production systems. Moreover, it is becoming more important under the recent scenario of climate change. The present study was conducted to develop a thermal comfort index for buffaloes. Physiological parameters of buffaloes and environmental variables were recorded to develop the index models through typical correlation. The most accurate model was based on body surface temperature, rectal temperature and respiratory rate and can be used effectively to indicate the state of thermal comfort in buffaloes under hot and humid climate.Heat stress results in serious performance losses and adversely affects animal health and welfare under various production systems. This study was conducted to develop a thermal comfort model for lactating buffaloes under hot and humid climate. Twenty Nili-Ravi buffaloes were randomly enrolled for this one-year study. Physiological parameters including rectal temperature (RT), respiratory rate (RR), and body surface temperature (BST) and environmental variables such as wet bulb temperature (WBT), dew point temperature (DPT), and black globe temperature (BGT) were recorded twice a week on each Tuesday and Thursday (n = 1602 and 1560, respectively) at 8:00 am and 2:30 pm. Moreover, ambient temperature (AT, °C) and relative humidity (RH, %), at an interval of every 30 min were recorded. We used a typical correlation analysis to build the index models for thermal comfort. The results revealed that AT positively correlated with BGT, WBT, DPT, BST, RT, and RR, while RH negatively correlated with RT. Moreover, a physiological index model consisting of BST, RT and RR (P1 = 0.578 × BST + 0.047 × RT + 0.429 × RR) and an environmental index model (E1 = 0.881 × AT + 0.194 × RH + 0.455 × BGT − 0.347 × WBT + 0.032 × DPT) proved to be a more accurate index as a pair to reveal the state of thermal comfort in lactating buffaloes. Moreover, these models correlated well with physiological variables, indicating that this this pair of index models can be used to effectively evaluate the thermal comfort in buffaloes.
Highlights
IntroductionHigh-temperature episodes for a longer time adversely affect milk yield and quality leading to huge economic losses to the dairy industry [3]
Animals have been intensively selected for breeding to increase performance to address ever increasing demand for food products and input costs
This study aimed to develop a model for evaluating the thermal comfort state in buffaloes using physiological and environmental parameters under hot and humid climate
Summary
High-temperature episodes for a longer time adversely affect milk yield and quality leading to huge economic losses to the dairy industry [3]. Despite the well-developed thermoregulatory system, exposure of buffaloes to higher ambient temperatures (≥36◦ C) adversely affects their performance [8,9,10]. High milk production and exposure to hot and humid climate especially under lack of proper shelter, wallowing, and/or swimming provisions, increases the susceptibility to heat stress in buffaloes [11]. Higher metabolic rate and heat generated during rumen fermentation make dairy animals (e.g., buffaloes) more prone to heat stress, because milk yield is associated with high metabolic heat production in the body [12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.