Abstract

The study of mica–epoxy-based composite has a great role in high voltage machines industry. Beside electric properties, this composite should present compatible mechanical and chemical, in this case thermal characteristics to insulate properly the conductor strand, avoiding short-circuits, and leading electrical current with minimal losses. Improvement of the quality is possible through the knowledge of raw materials and system. This study aims to list a complete thermal characterization of mica composite, its components, epoxy resin, anhydride methylhexahydrophtalic, mica tape and zinc naphthenate, and thermoanalytical interactions between them. These data shows intrinsic properties of the system, which is so relevant to its great electrical and thermal performance. Thermal analysis allows the detailed study of curing process and thermal decomposition, predicting and suggesting mechanisms, beside future and possible optimization to the system. Composite system glass transition (Tg) was obtained through an important and very respected methodology, presenting the value of Tg = 138 ± 2 °C, finally characterizing the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call