Abstract

Metal-oxide thermal boundary conductance (TBC) strongly influences the temperature rise in nanostructured systems, such as dense interconnects, when its value is comparable to the thermal conductance of the amorphous dielectric oxide. However, the thermal characterization of metal-amorphous oxide TBC is often hampered by the measurement insensitivity of techniques such as time-domain thermoreflectance (TDTR). Here, we use metal nanograting structures as opto-thermal transducers in TDTR to measure the TBC of metal-oxide interfaces. Combined with an ultrafast pump-probe laser measurement approach, the nanopatterned structures amplify the contribution of the thermal boundary resistance (TBR), the inverse of TBC, over the thermal resistance of the adjacent material, thereby enhancing measurement sensitivity. For demonstration purposes, we report the TBC between Al and SiO2 films. We then compare the impact of Al grating dimensions on the measured TBC values, sensitivities, and uncertainties. The grating periods L used in this study range from 150 to 300 nm, and the bridge widths w range from 72 to 205 nm. With the narrowest grating transducers (72 nm), the TBC of Al-SiO2 interfaces is measured to be 159-48+61 MW m-2 K-1, with the experimental sensitivity being 5× higher than that of a blanket Al film. This improvement is attributed to the reduced contribution of the SiO2 film thermal resistance to the temperature signal from TDTR response. The nanograting measurement approach described here is promising for the thermal characterization of a variety of nanostructured metal-amorphous passivation systems and interfaces common in semiconductor technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call