Abstract

Nesquehonite, hydromagnesite, and brucite are important precursors for the preparation of high-purity magnesia (MgO) using magnesium resources from salt lake as raw materials. In this paper, TG–DTG and DSC were used to investigate the thermal decomposition behaviors of the three precursors. Decomposition kinetic parameters at each stage were evaluated based on the TG data using the iso-conversional method. Decomposition mechanisms were determined using the master-plots method. The decomposition temperature range, heat absorption, and kinetic parameters of the three phases were then compared. The most probable mechanism of each stage from the perspective of crystal structure was found to be consistent with the calculation results from the master-plots method. Results led to the conclusion that nesquehonite is the most appropriate precursor for the preparation of high-purity MgO. Further studies on precursor selection and calcining condition selection for the preparation of MgO using bischofite will benefit from this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.