Abstract

The present paper critically analyzes, for the first time, the heat transfer characteristics associated with thermally fully developed combined electromagnetohydrodynamic flows through narrow flow conduits, considering electrokinetics effects, for the constant wall heat flux condition. In order to maintain the generality of the problem under consideration, the liquid flow is actuated by a combination of imposed pressure-gradient, electrokinetic effects and additional electromagnetic interactions. The alterations in the thermal transport phenomenon, induced by the variations in the imposed electromagnetic effects are thoroughly explained, in a pin-pointed manner, through an elegant analytical formalism. The essential features of the electromagnetohydrodynamic flow, and associated heat transfer characteristics, through the narrow confinement, are clearly highlighted by the variations in the non-dimensional flow velocity, non-dimensional temperature profile and the Nusselt number. Moreover, the influence of the imposed electromagnetic effects on micro/nano-scale thermal transport characteristics is clearly differentiated from other inherent effects like Joule heating and viscous dissipation. The implications of the constant wall temperature condition are also briefly discussed. The present endeavor has far-reaching implications towards the development of state-of-the-art electro-magneto-mechanical devices, with improved efficiency and functionality, for applications in the field of micro-scale thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.