Abstract

Our study examined the potential of using activated carbon/nanosized cobalt oxide (AC-Co3O4) as a new catalytic additive to improve the efficiency of the parent ammonium nitrate/magnesium/nitrocellulose (AN/Mg/NC) composite. These findings demonstrate a significant improvement in the thermal characteristics of AN/Mg/NC/AC-Co3O4 compared to the initial AN/Mg/NC. Raman spectra confirmed the multilayered nature of AC. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of cobalt oxide in the synthesized additive. Differential scanning calorimetry (DSC) revealed the catalytic effect of AC-Co3O4 on the AN/Mg/NC composite, resulting in the reduction in the decomposition peak temperature (Tmax) from 277.4 °C (for AN/Mg/NC) to 215.2 °C (for AN/Mg/NC/AC-Co3O4). Thermal gravimetric analysis (TG) determined the overall mass losses (%) for AN/Mg/NC (70%), AN/Mg/NC/AC (75%), and AN/Mg/NC/AC-Co3O4 (80%). This analysis highlights the significant role of AC-Co3O4 in enhancing the energy release during decomposition. Moreover, the use of the differential thermogravimetric (DTG) technique demonstrated the two-step decomposition pathways attributed to the multi-component system. Finally, the combustion tests under the pressure of 3.5 MPa validated the catalytic efficiency of the AC-Co3O4 additive, which enhanced the burning rate (rb) of the AN/Mg/NC/AC-Co3O4 composite from 10.29 to 19.84 mm/s compared to the initial AN/Mg/NC composite. The advantageous nature of the AN/Mg/NC/AC-Co3O4 composite with a lowered decomposition temperature can be applied in rocket propulsion systems, where the precise control of combustion and ignition processes is crucial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call